数学:2.2.3《向量数乘运算及其几何意义》PP课件(新人教必修4)_图文

新课标人教版课件系列

《高中数学》
必修4

2.2.3《向量数乘运算 及其几何意义》

教学目标
? 要求学生进一步掌握实数与向量的积的

定义、数乘运算的三个运算律,熟练掌 握向量共线的充要条件。 ? 教学重点:例2的教学。 ? 教学难点:例2的教学。

复习回顾:平面向量 既有大小又有方向的量。 1、定义: 几何表示法: 用有向线段表示 字母表示法: 用小写字母 a 表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B A C D

2、平面向量的加法、减法与数乘运算

b
a
向量加法的三角形法则

b a
向量加法的平行四边形法则

a b a
向量减法的三角形法则

ka ka

(k>0) (k<0)

向量的数乘

3、平面向量的加法、减法与数乘运算律 加法交换律: 加法结合律: 数乘分配律:

a?b ?b?a (a ? b) ? c ? a ? (b ? c) k (a ? b) ? k a+k b

推广:

(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
A1 A2 ? A2 A3 ? A3 A4 ? ? ? An ?1 An ? A1 An

(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。
A1 A2 ? A2 A3 ? A3 A4 ? ? ? An A1 ? 0

空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量 加法 减法 数乘 运算 运 算 律 加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零 加法交换律 a ? b ? b ? a

空间向量
具有大小和方向的量

加法结合律

(a ? b) ? c ? a ? (b ? c) 数乘分配律 k (a ? b) ? k a+k b

D A B

C

a
D1 C1 B1

A1

b
D C B A

D B

C

A

空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量 加法 减法 数乘 运算 运 算 律 加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零

空间向量
具有大小和方向的量

加法交换律 a ? b ? b ? a
加法结合律

(a ? b) ? c ? a ? (b ? c) 数乘分配律 k (a ? b) ? k a+k b

C

a b
O

+
A

b

B

OB ? OA ? AB

a
ka
ka

CA ? OA ? OC
空间向量的加减法

(k>0)
空间向量的数乘

(k<0)

B

b
O

b a
A

a

结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。

空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量 加法:三角形法则或 加法 平行四边形法则 减法 数乘 减法:三角形法则 运算 数乘:ka,k为正数,负数,零 运 算 律
加法交换律 a ? b ? b ? a
加法结合律

空间向量
具有大小和方向的量

加法:三角形法则或 平行四边形法则 减法:三角形法则
数乘:ka,k为正数,负数,零 加法交换律 a ? b ? b ? a 成立吗? 加法结合律 数乘分配律

(a ? b) ? c ? a ? (b ? c) 数乘分配律 k (a ? b) ? k a+k b

k (a ? b) ? k a+k b

加法结合律: (a ? b) ? c
O

? a ? (b ? c)
O

a
C
A

a b
A

+

c
C

b

B

c

b

B

c

推广:

(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
A1 A2 ? A2 A3 ? A3 A4 ? ? ? An ?1 An ? A1 An

(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。
A1 A2 ? A2 A3 ? A3 A4 ? ? ? An A1 ? 0

例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB ? BC (2) AB ? AD ? AA1 1 (3) ( AB ? AD ? AA1 ) 3 1 (4) AB ? AD ? CC1 2
A D B C A1 D1 B1 C1

D1 A1 B1

C1

a
D A C B D B C

A

平行六面体:平行四边形ABCD平移向量 a 到A1B1C1D1的轨迹所形成的几何体. 记做ABCD-A1B1C1D1

例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图)
(1) AB ? BC (2) AB ? AD ? AA1 1 (3) ( AB ? AD ? AA1 ) 3 1 (4) AB ? AD ? CC1 2
解:) AB ? BC=AC; (1
A D B A1 G C D1 B1 C1

M

(2) AB ? AD ? AA1 ? AC ? AA1 ? AC ? CC1 ? AC1

始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量

例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。

(1) AB1 ? A1 D1 ? C1C ? x AC
(2) 2 AD1 ? BD1 ? x AC1 (3) AC ? AB1 ? AD1 ? x AC1
A A1

D1 B1

C1

D B

C

例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。

(1) AB1 ? A1 D1 ? C1C ? x AC 解(1) AB1 ? A1 D1 ? C1C
D1 A1 B1 C1

? AB1 ? B1C1 ? C1C ? AC ? x ? 1.
A

D B

C

(2) 2 AD1 ? BD1 ? x AC1 (3) AC ? AB1 ? AD1 ? x AC1

例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。

(2) 2 AD1 ? BD1 ? x AC1 (3) AC ? AB1 ? AD1 ? x AC1
(2) 2 AD1 ? BD1

? AD1 ? AD1 ? BD1 ? AD1 ? ( BC1 ? BD1 ) ? AD1 ? D1C1 ? AC1
A1 D1 B1 C1

? x ? 1.
A

D B

C

例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。

(3) AC ? AB1 ? AD1 ? x AC1

(3) AC ? AB1 ? AD1
? ( AD ? AB) ? ( AA1 ? AB) ? ( AA1 ? AD) ? 2( AD ? AB ? AA1 )
? 2AC1
D1 A1 B1 C1

? x ? 2.
A

D B

C

练习1 在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简
A

1 (1) AB ? ( BC ? BD) 2 1 (2) AG ? ( AB ? AC ) 2
D G

B

M

C

练习1 在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简
A

1 (1) AB ? ( BC ? BD) 2 1 (2) AG ? ( AB ? AC ) 2
D G

(1)原式=AB ? BM ? MG ? AG
(2)原式
1 =AB ? BM ? MG ? ( AB ? AC ) 2 1 =BM ? MG ? ( AB ? AC ) 2 =BM ? MG ? MB ? MG

B

M

C

练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
A E B C D
' '

(1) AC ? x( AB ? BC ? CC )
'

(2) AE ? AA ? x AB ? y AD

A

D

B

C

练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
A E B C D
' '

(1) AC ? x( AB ? BC ? CC )
'

(2) AE ? AA ? x AB ? y AD

A

D

B

C

练习2 在立方体AC1中,点E是面AC’ 的中心,求下列各式中的x,y.
A E B C D

(2) AE ? AA ' ? x AB ? y AD

A

D

B

C

小结

类比思想

数形结合思想

平面向量
概念 定义 表示法 相等向量

空间向量
具有大小和方向的量

加法:三角形法则或 加法 平行四边形法则 减法 数乘 减法:三角形法则 运算 数乘:ka,k为正数,负数,零 数乘:ka,k为正数,负数,零
运 算 律
加法交换律 a ? b ? b ? a 加法结合律 加法交换律 a ? b ? b ? a 加法结合律

(a ? b) ? c ? a ? (b ? c) 数乘分配律 k (a ? b) ? k a+k b

(a ? b) ? c ? a ? (b ? c)
数乘分配律

k (a ? b) ? k a+k b

空间四边形ABCD中, ? a , =b , ? c , AB BC AD 试用a , b, c来表示CD, , BD. AC
思考题:考虑空间三个向量共面的充要条件.

思考:空间任意两个向量是否可能异面?
B

b

O

A

思考:它们确定的平面是否唯一?

a
结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。

1.在平行六面体ABCD-EFGH中,

AG ? x AC ? y AF ? z AH
求x+y+z的值. 2.已知ABCD为正方形,P是ABCD所 在平面外一点,P在平面ABCD上的射 影恰好是正方形的中心O,Q是CD的 中点,求下列各题中x、y的值。

(1)OQ ? PQ ? x PC ? y PA
(2) PA ? x PO ? y PQ ? PD

3.在ΔABC中,E、F、D分别是AC、 AB、BC的中点,

求AD ? BE ? CF
4.已知空间四边形ABCD中,G是CD 的中点,

1 求AG ? ( AB ? AC ) 2


相关文档

高中数学2.2.3 向量数乘运算及其几何意义 PP课件 新人教必修4
高中数学 第二章 2.2.3向量数乘运算及其几何意义课件 新人教A版必修4
高中数学 2.2.3向量数乘运算及其几何意义课件 新人教A版必修4
高中数学 2.2.3向量数乘运算及其几何意义课件 新人教A版必修4(1)
高中数学 2.2.3向量数乘运算及其几何意义课件 新人教A版必修4(2)
高中数学 2.2.2向量减法运算及其几何意义课件 新人教A版必修4
高中数学 2.2.2向量的减法运算及其几何意义教学课件 新人教A版必修4
数学:223《向量数乘运算及其几何意义》PP课件(新人教必修4)
高中数学必修4 2.2.3向量数乘运算及其几何意义 PPT课件
高中数学人教A必修4课件2.2.3 向量数乘运算及其几何意义ppt版本
学霸百科
电脑版 | 学霸百科