福建省寿宁县第一中学高一数学必修1课件:2.2.2 对数函数及其性质1_图文

一.对数函数的定义 y ? log a x ( a ? 0且a ? 1) 二.对数函数的图象 画出对数函数 y ? log 2 x , y ? log 1 x的图象。 2 思考:函数y=log2x与函数 y ? log 1 x 2 的图象有何关系 ? 用描点法画对数函数 二.对数函数的图象 y y y y y y y y y y ? log a x (a>1) 0 01 01 01 0 1 x 01 x x 1 0 x1 x 01 0 1 x x x x y ?y log ?a y log x ?a y log x ?y log ? xy log xa y log x ?y log ? x ylog ?x log a a ? a a a xa x (0<a<1 (0<a<1 ) (0<a<1 ) (0<a<1 ( )0<a<1 ( )0<a<1 ) (0<a<1 ( )0<a<1 ( ) 0<a<1 )) 三.对数函数的性质 大 致 图 形 定义域 值域 定点 奇偶性 y y ? log a x (a>1) 1 0 x y ? log a x ?0, ? ?? R (1,0) (0<a<1) 非奇非偶 大 致 图 形 单调性 y 0 1 y ? log a x y 0 1 x x y ? log a x a>1 0<a<1 y=logax在(0,+?) y=logax在(0,+?)上单 上单调递增。 调递减。 数值 变化 若a>1, x>1则y>0 若a>1, 0<x<1则y<0 若0<a<1, 0<x<1则y>0 若0<a<1, x>1则y<0 y 图 形 y=log 2 x y=lgx 0 1 y=log 0.1x x y=log 0.5x 补充 底数互为倒数的两个对数函数的图 性质 象关于x轴对称。 一 补充 在第一象限,底数越大,其图象越接 性质 近x轴。 二 在第四象限,底数越小,其图象 练习1: 比较a、b、c、d、1的大小 答:b>a>1>d>c 例1: 求下列函数的定义域: 2 x (1) y ? log 2 ( x ? 4 x ? 5) (2) y ? log ( x ? 1 ) (16 ? 4 ) ?1?由x 2 ? 4 x ? 5 ? 0得x ? 5或x ? ?1 解: ?5, ? 原函数的定义域是 ? ? ? ? ?? ?, ? 1? ? x ? 1 ? 0且x ? 1 ? 1 ?2 ?由? 得 ? 1 ? x ? 2且x ? 0 x 16 ? 4 ? 0 ? ?? 1,0? ? ?0, ? 原函数的定义域是 2? 例2: 比较下列各组数中两个值的大小: (1) l og2 3.4, l og2 8.5 (2) l og0.3 1.8, l og0.3 2.7 (3) l oga 5.1, l oga 5.9 (a ? 0, a ? 1) 方法: 利用对数函数的单调性比较两个对数的大小. 例3:比较下列各组中两个值的大小: (1) l og3 ? , l og2 0.8 ( 2) l og6 7, l og7 6 (3) l og0.3 0.1, l og0.2 0.1 注: 当不能直接进行比较时, 可利用中间值 ( 如1或0等 ) , 间接比较上述两个对数的大小。 练习: 2 将0.3 ,log20.5,log0.51.5由小到大排列, 顺序是: log20.5< log0.5 2 1.5<0.3 练习2: 1.求下列函数的定义域: y? log 2 x ? 1   2.求下列函数的值域: y ? l og1 (4 ? x ) 2 2 小结: 1.对数函数的定义; 2.对数函数的图象和性质; 3.比较两个对数值的大小。 作业:

相关文档

福建省寿宁县第一中学高一数学必修1课件:2.1.2 指数函数及其性质2
福建省寿宁县第一中学高中数学必修一ppt课件 2.2.2对数函数及其性质1
福建省寿宁县第一中学高一数学必修1课件:2.1.2 指数函数及其性质1
福建省寿宁县第一中学高一数学必修1课件:1.2.2 函数的表示法1
福建省寿宁县第一中学高中数学必修一ppt课件 2.1.2指数函数及其性质2
福建省寿宁县第一中学高中数学必修一ppt课件 2.1.2指数函数及其性质1
福建省寿宁县第一中学高一数学必修1课件:1.1.2 集合间的基本关系
福建省寿宁县第一中学高一数学必修1课件:1.3.1 函数的单调性
福建省寿宁县第一中学高中数学必修一ppt课件 2.2.1对数与对数运算2
学霸百科
电脑版 | 学霸百科