高中数学第三章统计案例3.1独立性检验假设检验hypothesistesting)素材苏教版选修2_3_图文

假设检验(hypothesis testing) 方法演变:t 检验、z 检验、F 检验、卡方检验,方差分析( ANOVA) ? 概述 假设检验是分析数据的一种方法。回答此类问题: “随机发生的事件的概率是多少?”另一方面的问题是: “我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。 这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的 差别吗?”或”顾客对场地 A 的满意度是不是比其他场地高?” 2 最常用的检验是:z 检验、t 检验、F 检验、卡方(χ )检验和方差分析。这些检验和其他的检验都是基 于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。最有名的分布就是正态分布,它是: 2 检验的基础。t 检验、F 检验和卡方(χ )检验是基于 t 分布、F 分布和卡方分布。 ? 适用场合 ·想知道一组或更多组数据的平均值、比例、方差或其他特征时; ·当结论是基于更大总体中所取得的样本时。 例如: ·想确定一个过程的均值或方差有否改变; ·想确定很多数据集的均值或方差是否不同: ·想确定两组不同的数据集的比例是否不同; ·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于) 。 ? 实施步骤 假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤 1~3) ;数字计算通常由计算 机完成(步骤 4 和步骤 5) ;应用数值结果到实际问题中(步骤 6) 。虽然计算机能处理数字,但理解假没检验 隐含的观念对第 1 部分和第 3 部分至关重要。 如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。这些定义解释了假设检验的慨 念,然后再回来看这个步骤。 本书不可能详细地涉及假设检验。这个步骤是个综述和快速参考。要得到更多的信息,查阅统计学参考 书或请教统计学家。 1 确定要从数据中获得的结论。选择适当的检验方法。用哪种检验取决于检验的目的和数据的种类。可 以用表 5.7 和表 5.8 概括的常用的假设检验,或者请教统计学家以得到帮助。 2 建立零假设和备择假设。确定问题是属于双尾检验、左尾检验还是右尾检验。 3 选择显著性水平。 。 4 计算检验统计量,可借助计算机软件。 5 用统计分布的统计表或计算机程序等来确定检验统计量的 P 值。对于 z 检验可用表 A.1 正态曲线以下 的曲线。 6 把 P 值与左尾或右尾检验的α 或者双尾检验的α /2 作比较,如果 P 值较小,那么拒绝零假设并会得到 备择假设可能正确的结论。否则,不能拒绝零假设,并得出没有足够证据支持备择假设的结论。 ? 备择步骤 步骤 1~4 同上。然后: 5 用统计表或计算机程序确定如下所示的检验统计量的临界值和拒绝域。以 z 检验作为示例,对 t 检验、 2 F 检验或卡方检验,用统计量 f、F 或χ 来替换 z。 6 比较检验统计量和拒绝域。如果检验统计量值落在拒绝域内,拒绝零假设,结论是备择假设可能止确。 否则,不拒绝零假设,结论是没有足够的证据支持备择假设。 1 2 ? 示例:t 检验 一家食品杂货店从一供应商处购买几箱苹果,每箱质量为 50 磅(1lb=0.455kg),固定价格。 供应商保证每箱的平均质量确实是 50 磅。产品小组随机抽取 10 箱称量。质量分别为: 50.1 49.6 50.3 49.9 49.5 49.7 50.0 49.6 49.7 50.2 杂货店受骗没有? 统计上讲,产品小组的问题是: “我们接受的苹果箱的平均质量少于 50 磅吗?”零假设是“苹果箱的平 均质量等于 50 磅” ,备择假设是“苹果箱的平均质量小于 50 磅”计划用 5%的显著性水平。 在表 5.7 中找均值与给定的值作比较的检验。σ 未知,样本容量小于 30 个,假设箱子的质量服从正态分 布。因此用 t 检验。因为备择假设是“小于” ,所以需要左尾检验。 向在线计算器中输入数据得到以下结果: 3 样本均值= 49.86 标准方差=0.28 t=-1.583 P=0.07 因为 P 值大于 0.05,所以不能拒绝零假设,没证据表明他们受骗。图表 5.99 显示了 t 分布,检验统计 量 t=-1.583,曲线下这个值以外的区域是 P=0.07。 用备择步骤,从 t 表中确定 a=0. 05,自由度为 9,临界值为 ta=-1. 833。因为是左尾检验,拒绝域 是任何小于-1. 833 的 z 值。检验统计量为-1.583,没有落在拒绝城,所以不拒绝零假设。 图表 5.100 显示了 t 分面、临界值、拒绝域和曲线下相等于 a=0. 05 的区域。两幅图的比较表明两个实 施步骤如何以不同方式得到相同结论的过程。对左尾情况,只要检验统计量 t 大于临界值 ta,曲线下 t 值左 边的区域即 P 值就比 a 大,a 就是曲线下 ta 左边的区域。 ? 示例:卡方检验 1 一家服装零售商想了解其提议的生产线的变化是否会在不同地区被同样地接受。 他们随机挑选了 750 名顾客,描述了提议的新产品,然后让顾客估计购买的可能性。他 们按地理位置对数据分组,建立了五行、四列的关联表,见图表 5.17 的关联表。 从表 5.8 看出,卡方检验是最合适的,比较了各组的分布。这种检验总是有尾的。零假设可陈述为“五 个地区的顾客在购买可能性分布上没有差异” ,备择假没是 “五组购买的可能性分布有差异” 。 选择显著性水平为 5%,计算出自由度为 df=12。大多卡方表按备择步骤设计,可以查询 a 或 l-a,读 2 取临界值。对 a =0. 05 和 df=12 来说,χ 临界值为 21.026。如果检验统计量大于它就拒绝零假设。 用电子制表软件计算每一单元的 E。E 代表着零假设为真时的期望值,也就是每个地区的购买可能性分布 2 2 和整体分布一样时的期望值。接着计算每单元的 (O-E) ÷E,加起来得到检验统计量χ =22

相关文档

高中数学第三章统计案例31独立性检验假设检验hypothesistesting素材苏教版选修23
高中数学第三章统计案例3.1独立性检验数量方法笔记素材苏教版选修2_3
高中数学第一章统计案例11独立性检验假设检验hypothesistesting素材新人教B版选修12
高中数学第一章统计案例1.1独立性检验假设检验素材新人教B版选修1_2
高中数学第三章统计案例3.1独立性检验课前导引素材新人教B版选修2_3
高中数学 第三章 统计案例 3_1 独立性检验课前导引素材 新人教B版选修2-3
高中数学第一章统计案例1.1独立性检验假设检验hypothesis_testing素材新人教B版选修1_2
高中数学第一章统计案例1.1独立性检验卡方检验素材新人教B版选修1_2
高中数学第一章统计案例1.2独立性检验是如何判断两个事件是否相互独立的素材北师大版选修1_2
电脑版