【精选】北京课改版八年级上13.8《基本作图》WORD教案(1)-数学知识点总结

数学、高中数学、数学课件、数学教案、数学试题、试卷数学、数学考试、奥数、集合、有理数、函数、不等式、解三角形 13.8 基本作图教案 教学目标: 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种基本作图,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力. 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和图形的和谐统一。 教学重点:熟练掌握五个基本作图,作图时要做到规范使用尺规,规范使用作图语言,规范地按照 步骤作出图形。 教学难点:作图语言的准确应用,作图的规范与准确。 教学用具:直尺,圆规 教学方法:讲练结合法 教学过程: 前面我们学习了全等三角形的性质、判定及一些较简单的几何证明题.在学习中常常感到需 要有准确、方便的画图方法,画出符合条件的几何图形.本节我们学习这种几何作图方法. 一、阅读教材,理解概念 学生阅读教材第一部分,并回答问题: (1)尺规作图:在几何里,把限定用直尺和圆规来画图,称为尺规作图. (学生使用的尺子都有刻度,这里告诉学生,直尺是用来画直线的,或者延长线段、射线成 直线的.我们作图时,可以使用一般的刻度尺、三角板,只要不用它们去度量长度,就是这里所说 的直尺) (2)基本作图:最基本、最常用的尺规作图,通常称基本作图. 一些复杂的尺规作图,都是由基本作图组成的,以前曾讲过用尺规作一条线段等于已知线 段,这是一种基本作图,下面再介绍几种基本作图: 练习:作一条线段等于已知线段 二、讲解例题,熟悉语言 教师边作图边用语言叙述作法,让学生听懂。 前面我们学会了用直尺和圆规作一条线段等于已知线段,学习判定两个三角形全等 “边边边”公 理时曾经已知三边画三角形得到边边边公理而因全等三角形的对应角相等,进而达到角相等的目 的. 1.作一个角等于已知角 分析:解作图题的方法与证明题解法不相同,它一般应包括已知,求作。对于作图首先将文字 叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。 已知: 求作: AOB 使 = AOB 分析:假设∠A'O'B'已作出,且∠A'O'B'=∠ AOB,如图 2,在 OA、OB、O'A'、O'B'上取点 C、 D、C'、D',使 OC=OD=O'C'=O'D',那么△COD≌△ C'O'D'. 由此可知,要作出∠A'O'B',使∠A'O'B'=∠AOB,只要作出△O'C'D',使 O'C'=OC, O'D'=OD,C'D'=CD,这就是前面学过的“已知三边画三角形”. 数学、高中数学、数学课件、数学教案、数学试题、试卷数学、数学考试、奥数、集合、有理数、函数、不等式、解三角形 数学、高中数学、数学课件、数学教案、数学试题、试卷数学、数学考试、奥数、集合、有理数、函数、不等式、解三角形 作法:1、作射线 2、以点 O 为圆心,以任意长为半径作弧,交 OA 于 C,交 OB 于 D 3、以点 4、以点 为圆心,以 OC 长为半径作弧,交 于 为圆心,以 CD 长为半径作弧,交前弧于 5、经过点 作射线 。 就是所求的角 证明:连结 CD、C'D',由作法可知 △C'O'D≌△COD(SSS) ∴ ∠C'O'D'=∠COD(全等三角形对应角相等). 即∠A'O'B'=∠AOB. 说明:作图题的证明,常以作法为根据,只要“作法”中写明了作的是什么,证明中就可以用它 作根据去证明.注意,在作图题的“证明”中,一般过程都写得比较简单.如 这个 证明三角形全

相关文档

【精选】北京课改版八年级上13.8《基本作图》WORD教案-数学知识点总结
【精选】北京课改版八年级上13.6《等腰三角形》WORD教案(1)-数学知识点总结
【精选】北京课改版八年级上13.4《全等三角形》WORD教案2(1)-数学知识点总结
【精选】北京课改版八年级上13.11《勾股定理》WORD教案(1)-数学知识点总结
【精选】北京课改版八年级上13.12《勾股定理的逆定理》WORD教案(1)-数学知识点总结
【精选】北京课改版八年级上13.4《全等三角形》WORD教案-数学知识点总结
【精选】北京课改版八年级上13.11《勾股定理》WORD教案-数学知识点总结
【精选】北京课改版八年级上13.3《三角形中的主要线段》WORD教案(1)-数学知识点总结
【精选】北京课改版八年级上13.5《全等三角形的判定》(一)WORD教案-数学知识点总结
【精选】北京课改版八年级上13.12《勾股定理的逆定理》WORD教案-数学知识点总结
电脑版