(第22讲)高中数学复习专题讲座-曲线轨迹方程的求法

培人家教网制作 欢迎访问 http://www.peiren.com/

题目 高中数学复习专题讲座 曲线的轨迹方程的求法 高考要求 求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方 程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这 类问题除了考查学生对圆锥曲线的定义, 性质等基础知识的掌握, 还充分考查了各种数学思 想方法及一定的推理能力和运算能力, 因此这类问题成为高考命题的热点, 也是同学们的一 大难点 重难点归纳 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化 简即得动点轨迹方程 (2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆 等),可用定义直接探求 (3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程 (4)参数法 若动点的坐标(x,y)中的 x,y 分别随另一变量的变化而变化,我们可以以这个 变量为参数,建立轨迹的参数方程 求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程” 是两个不同的概念 典型题例示范讲解 典型题例示范讲解 y 点, 例 1 如图所示,已知 P(4,0)是圆 x2+y2=36 内的一 Q B A、 是圆上两动点, B 且满足∠APB=90°, 求矩形 APBQ 的 R 顶点 Q 的轨迹方程 A 命题意图 本题主要考查利用“相关点代入法”求 曲 o x P 线的轨迹方程 知识依托 利用平面几何的基本知识和两点间的 距 离公式建立线段 AB 中点的轨迹方程 错解分析 欲求 Q 的轨迹方程, 应先求 R 的轨迹方 程, 若学生思考不深刻,发现不了问题的实质,很难解决此题 技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的 轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程 解 设 AB 的中点为 R,坐标为(x,y),则在 Rt△ABP 中,|AR|=|PR| 又因为 R 是弦 AB 的中点, 依垂径定理 在 Rt△OAR 中, 2=|AO|2-|OR|2=36-(x2+y2) |AR|
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x c 王w 王kt@ 新王m 王 新 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w c新t@ 21新.6c王o 王 x k 王 m

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6王o 王 王 .c m x

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w c新@ 21新c.6王o 王 x t 王k m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6王o 王 王 .c m x

又|AR|=|PR|= ( x ? 4) 2 + y 2 所以有(x-4)2+y2=36-(x2+y2),即 x2+y2-4x-10=0 因此点 R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求的轨迹上运动 设 Q(x,y),R(x1,y1),因为 R 是 PQ 的中点,所以 x1= 代入方程 x2+y2-4x-10=0,得

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

x+4 y+0 , y1 = , 2 2

x+4 2 y x+4 ) + ( )2 ? 4 ? -10=0 2 2 2 整理得 x2+y2=56,这就是所求的轨迹方程 (
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

培人家教网 http://www.peiren.com/

Page 1 of 7

版权所有,转载必究,如需修改,联系本站

培人家教网制作 欢迎访问 http://www.peiren.com/
2 例 2 设点 A 和 B 为抛物线 y =4px(p>0)上原点以外的两个动点,已知 OA⊥OB,OM⊥ AB,求点 M 的轨迹方程,并说明它表示什么曲线 命题意图 本题主要考查“参数法”求曲线的轨迹方程 知识依托 直线与抛物线的位置关系 错解分析 当设 A、B 两点的坐标分别为(x1,y1),(x2,y2)时,注意对“x1=x2”的讨论 技巧与方法 将动点的坐标 x、y 用其他相关的量表示出来,然后再消掉这些量,从而 就建立了关于 x、y 的关系 解法一 设 A(x1,y1),B(x2,y2),M(x,y) (x≠0) 直线 AB 的方程为 x=my+a y
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

由 OM⊥AB,得 m=-

y x
o

A

由 y2=4px 及 x=my+a,消去 x,得 y2-4pmy-4pa=0

( y1 y2 )2 = a2 所以 y1y2=-4pa, x1x2= 2 (4 p)
所以,由 OA⊥OB,得 x1x2 =-y1y2 所以 a 2 = 4 pa ? a = 4 p 故 x=my+4p,用 m=-

N
M B

x

y 代入,得 x2+y2-4px=0(x≠0) x

故动点 M 的轨迹方程为 x2+y2-4px=0(x≠0), 它表示以(2p,0)为圆心, 2p 为半径的圆, 以 去掉坐标原点
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

解法二







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

设 OA 的方程为 y = kx ,代入 y2=4px 得 A(

2p 2p , ) k2 k

1 x ,代入 y2=4px 得 B (2 pk 2 , ?2 pk ) k k ∴AB 的方程为 y = ( x ? 2 p ) ,过定点 N (2 p, 0) , 1? k 2
则 OB 的方程为 y = ?
由 OM⊥AB,得 M 在以 ON 为直径的圆上(O 点除外) 故动点 M 的轨迹方程为 x2+y2-4px=0(x≠0), 它表示以(2p,0)为圆心, 2p 为半径的圆, 以 去掉坐标原点
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

解法三







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

设 M(x,y) (x≠0),OA 的方程为 y = kx ,

2p 2p , ) k2 k 1 则 OB 的方程为 y = ? x ,代入 y2=4px 得 B (2 pk 2 , ?2 pk ) k
代入 y2=4px 得 A( 由 OM⊥AB,得 M 既在以 OA 为直径的圆 又在以 OB 为直径的圆
源 源 源 源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

x2 + y2 ?

2p 2p x? y = 0 ……①上, 2 k k

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

x 2 + y 2 ? 2 pk 2 x + 2 pky = 0 ……②上(O 点除外) ,
Page 2 of 7 版权所有,转载必究,如需修改,联系本站

培人家教网 http://www.peiren.com/

培人家教网制作 欢迎访问 http://www.peiren.com/

① ×k +②得 x2+y2-4px=0(x≠0)
2

故动点 M 的轨迹方程为 x2+y2-4px=0(x≠0), 它表示以(2p,0)为圆心, 2p 为半径的圆, 以 去掉坐标原点 检测一个直径为 例 3 某检验员通常用一个直径为 2 cm 和一个直径为 1 cm 的标准圆柱, 3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱 的直径为多少? 命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的 能力 知识依托 圆锥曲线的定义,求两曲线的交点 错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关 键 技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程 解 设直径为 3,2,1 的三圆圆心分别为 O、A、B,问题转化为求两等圆 P、Q,使它们与 ⊙O 相内切,与⊙A、⊙B 相外切 y 建立如图所示的坐标系,并设⊙P 的半径为 r,则 P |PA|+|PO|=(1+r)+(1 5-r)=2 5 ∴点 P 在以 A、O 为焦点,长轴长 2 5 的椭圆上, 其 方 x A o 程为 B
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 王王 特特 新王 特特 特特 王王 新新 王王
t p w .x y .c /w x h /: w k t o j g m /c x c 1 .c m w @ 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特新王 特特 王特特 新特特 王 王 王王 新新 王王
t p w .x y .c /w x h /: w k t o j g m /c x c 1 .c m w @ 2 o k t 6







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

1 16( x + ) 2 2 4 + 2 y =1 ① 25 3 同理 P 也在以 O、B 为焦点,长轴长为 2 的椭圆上,其方程为 1 4 (x- )2+ y2=1 ② 2 3 9 12 9 12 由①、②可解得 P ( , ), Q ( ,? ) , 14 14 14 14
∴r=

Q

3 9 12 3 ? ( )2 + ( )2 = 2 14 14 7
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

6 cm 7 例 4 已知 A、B 为两定点,动点 M 到 A 与到 B 的距离比为常数λ,求点 M 的轨迹方程, 并注明轨迹是什么曲线 y 解 建立坐标系如图所示, M(x,y) 设|AB|=2a,则 A(-a,0),B(a,0) 设 M(x,y)是轨迹上任意一点 | MA | 则由题设,得 =λ,坐标代入,得 | MB | o x B(a,0) A(-a,0)
故所求圆柱的直径为
新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

( x + a) 2 + y 2 ( x ? a) 2 + y 2

=λ,化简得

培人家教网 http://www.peiren.com/

Page 3 of 7

版权所有,转载必究,如需修改,联系本站

培人家教网制作 欢迎访问 http://www.peiren.com/

(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0 (1)当λ=1 时,即|MA|=|MB|时,点 M 的轨迹方程是 x=0,点 M 的轨迹是直线(y 轴) (2)当λ≠1 时,点 M 的轨迹方程是 x2+y2+

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

2a (1 + λ2 ) x+a2=0 2 1? λ

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

点 M 的轨迹是以(-

a(1 + λ2 ) 2 aλ ,0)为圆心, 为半径的圆 2 1? λ | 1 ? λ2 |
源 源 源

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

学生巩固练习 学生巩固练习 巩固 1 已知椭圆的焦点是 F1、F2,P 是椭圆上的一个动点,如果延长 F1P 到 Q,使得 |PQ|=|PF2|,那么动点 Q 的轨迹是( ) A 圆 B 椭圆 C 双曲线的一支 D 抛物线
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

x y =1 的长轴两个端点,P1、P2 是垂直于 A1A2 的弦的端点, + 9 4 则直线 A1P1 与 A2P2 交点的轨迹方程为( )
2
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

2

2

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

设 A1、A2 是椭圆

y2 x2 + =1 9 4 y2 x2 C D ? =1 9 4 a a 1 3 △ABC 中, 为动点, C 为定点, A B、 B(- ,0),C( ,0), 且满足条件 sinC-sinB= sinA, 2 2 2 则动点 A 的轨迹方程为_________ 4 高为 5 m 和 3 m 的两根旗杆竖在水平地面上, 且相距 10 m, 如果把两旗杆底部的坐 标分别确定为 A(-5,0)、B(5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是 _________ E F 5 已知 A、B、C 是直线 l 上的三点,且|AB|=|BC|=6, ⊙O′切 O' D 直线 l 于点 A,又过 B、C 作⊙O′异于 l 的两切线,设这两 切线交于 A B C 点 P,求点 P 的轨迹方程
A
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

x2 y2 + =1 9 4 x2 y2 ? =1 9 4

B

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源
t /: w .x t .c /w /x h w p k y m j g o c

特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

6

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

双曲线

x2 y2 ? =1 的实轴为 A1A2, P 是双曲线上的一个动点, A1Q⊥A1P, 2Q 点 引 A a 2 b2
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

⊥A2P,A1Q 与 A2Q 的交点为 Q,求 Q 点的轨迹方程 7
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

已知双曲线

x2 y2 ? =1(m>0,n>0)的顶点 m2 n2
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

为 A1 、
y M A1 o A2 x P

A2,与 y 轴平行的直线 l 交双曲线于点 P、Q (1)求直线 A1P 与 A2Q 交点 M 的轨迹方程; (2)当 m≠n 时,求所得圆锥曲线的焦点坐标、 程和离心率
新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

准 线 方

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

8

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

x2 y2 已知椭圆 2 + 2 =1(a>b>0),点 P 为其上 a b
y

Q

一 点 ,
Q R

培人家教网 http://www.peiren.com/

Page 4 of 7

版权所有,转载必究,如需修改,联系本站 P

F1

o

F2

x

培人家教网制作 欢迎访问 http://www.peiren.com/

F1、F2 为椭圆的焦点,∠F1PF2 的外角平分线为 l,点 F2 关于 l 的对称点为 Q,F2Q 交 l 于 点R (1)当 P 点在椭圆上运动时,求 R 形成的轨迹方程;
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

(2)设点 R 形成的曲线为 C,直线 l
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

y=k(x+ 2 a)与曲线 C 相交于 A、B 两点,当△AOB

的面积取得最大值时,求 k 的值 参考答案 1 解析 ∵|PF1|+|PF2|=2a,|PQ|=|PF2|, ∴|PF1|+|PF2|=|PF1|+|PQ|=2a, 即|F1Q|=2a,∴动点 Q 到定点 F1 的距离等于定长 2a,故动点 Q 的轨迹是圆 答案 A 2 解析 设交点 P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)
新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

∵A1、P1、P 共线,∴

y ? y0 y = x ? x0 x + 3 y + y0 y = x ? x0 x ? 3
2 2

∵A2、P2、P 共线,∴

x y 9 3y x2 y 2 解得 x0= , y0 = , 代入得 0 ? 0 = 1,即 ? =1 x x 9 4 9 4 答案 C
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

3

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

解析







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

由 sinC-sinB=

1 1 sinA,得 c-b= a, 2 2 a 16 x 2 16 y 2 a ,故方程为 2 ? = 1( x > ) 2 4 2 a 3a
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

∴应为双曲线一支,且实轴长为

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

答案







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

a 16 x 2 16 y 2 ? = 1( x > ) 2 2 4 a 3a
源 源 源

4

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

解析

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

设 P(x,y) ,依题意有

5 ( x + 5) 2 + y 2

=

3 ( x ? 5) 2 + y 2

,化简得 P 点轨迹方程为

4x2+4y2-85x+100=0 答案 4x2+4y2-85x+100=0 5 解 设过 B、C 异于 l 的两切线分别切⊙O′于 D、E 两点,两切线交于点 P 由切线的 性质知 |BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC| =|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点 P 的轨迹是以 B、C 为两焦点 的椭圆,以 l 所在的直线为 x 轴,以 BC 的中点为原点,建立坐标系,可求得动点 P 的轨迹
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

方程为
源 源 源

x2 y2 + =1(y≠0) 81 72 6 解 设 P(x0,y0)(x≠±a),Q(x,y) ∵A1(-a,0),A2(a,0)
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

h : w w j.x g o m /w c t /p k t .c y x /

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

培人家教网 http://www.peiren.com/

Page 5 of 7

版权所有,转载必究,如需修改,联系本站

培人家教网制作 欢迎访问 http://www.peiren.com/

y0 ? y ? x0 = ? x ( x0 ≠ ± a ) ? x + a ? x + a = ?1 ? ? 0 由条件 ? 得? x2 ? a2 y0 y y0 = ? ? ? = ?1 y ? ? x ? a x0 ? a ?
而点 P(x0,y0)在双曲线上,∴b2x02-a2y02=a2b2 即 b2(-x2)-a2(
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

x2 ? a2 2 2 2 ) =a b y
源 源 源

化简得 Q 点的轨迹方程为 a2x2-b2y2=a4(x≠±a) 7 解 (1)设 P 点的坐标为(x1,y1),则 Q 点坐标为(x1,-y1),又有 A1(-m,0),A2(m,0),则 A1P 的
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

方程为







新新 新新 新新 新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

y=

y1 ( x + m) x1 + m
y=-



A2Q 的方程为







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

y1 ( x ? m) x1 ? m
2



①×②得







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

y2=-

y1
2

x1 ? m 2

(x2 ? m2 )



又因点 P 在双曲线上,故

x1 y n2 2 2 ? 12 = 1,即y1 = 2 ( x1 ? m 2 ). m2 n m
此即为 M 的轨迹方程
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

2

2

代入③并整理得

x2 y2 + 2 =1 m2 n

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

(2)当 m≠n 时,M 的轨迹方程是椭圆

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

(ⅰ )当 m > n 时, 焦 点坐 标 为 (± m 2 ? n 2 ,0), 准 线 方 程为 x= ±

m2 m2 ? n2

,离心率

e=

m2 ? n2 ; m m 2 ? n 2 ), 准 线 方 程 为 y= ± n2 n2 ? m2
,离心率

( ⅱ ) 当 m < n 时 , 焦 点 坐 标 为 (0, ±

e=
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

n2 ? m2 n
源 源 源

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

8 解 (1)∵点 F2 关于 l 的对称点为 Q,连接 PQ, ∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2| 故点 F1、 Q 在同一直线上, P、 设存在 R(x0,y0) 1,y1),F1(- ,Q(x 又因为 l 为∠F1PF2 外角的平分线,
新新 新新 新新 新新
源 源 源 源 源 源 源 源 源 源 源 源 源 源 源

h : w w j.x g o m /w c t /p k t .c y x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c t 2 .6 o x @1 c m k

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

培人家教网 http://www.peiren.com/

Page 6 of 7

版权所有,转载必究,如需修改,联系本站

培人家教网制作 欢迎访问 http://www.peiren.com/

c,0),F2(c,0) |F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)2
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

x1 + c ? ? x0 = 2 ? 又? ? y = y1 ? 0 2 ? 得 x1=2x0-c,y1=2y0 ∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2 故 R 的轨迹方程为 x2+y2=a2(y≠0)
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

(2)如右图,∵S△AOB=

1 a2 |OA|·|OB|·sinAOB= sinAOB 2 2 1 当∠AOB=90°时,S△AOB 最大值为 a2 2
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

y C A

B

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

此时弦心距|OC|=

| 2 ak |
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

o

x

1+ k2

在 Rt△AOC 中,∠AOC=45°,



| OC | | 2ak | 2 3 = = cos 45° = ,∴ k = ± . 2 | OA | a 1 + k 2 3
源 源 源

课前后备注

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

更多试卷下载请访问:http://www.peiren.com/ 更多试卷下载请访问:

培人家教网 http://www.peiren.com/

Page 7 of 7

版权所有,转载必究,如需修改,联系本站


相关文档

高中数学复习专题讲座(第22讲)曲线轨迹方程的求法
高中数学复习专题讲座(第21讲)曲线轨迹方程的求法
高中数学复习专题讲座(第23讲)关于求圆锥曲线方程的方法
高中数学复习专题讲座关于求圆锥曲线方程的方法
高中数学复习专题讲座(第22讲)关于求圆锥曲线方程的方法
(第23讲)高中数学复习专题讲座-关于求圆锥曲线方程的方法
高中数学复习专题讲座曲线的轨迹方程的求法
高中数学复习专题讲座 关于求圆锥曲线方程的方法
上海高中数学复习专题讲座:关于求圆锥曲线方程的方法
电脑版