河南省濮阳市2018届高三第一次模拟考试数学(理)试题 Word版含解析

濮阳市 2018 届高三毕业班第一次模拟考试 数学(理科) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1. 已知集合 A. 【答案】C 【解析】 2. 若复数 满足 A. 【答案】A 【解析】设 , ,即 ,即 ,故选 A. B. C. ,所以 ,故选 C. ( ) B. , C. D. ,则 ( ) ,其中 为虚数单位, 表示复数 的共轭复数,则 D. 3. 如图所示的长方形的长为 2,宽为 1,在长方形内撒一把豆子(豆子大小忽略不计),然后 统计知豆子的总数为 粒,其中落在飞鸟图案中的豆子有 粒,据此请你估计图中飞鸟图案的 面积约为( ) A. B. C. D. 【答案】B 【解析】设飞鸟图案的面积为 ,那么 4. 函数 ,几 ) ,故选 B. 的图象大致为( A. B. C. D. 【答案】C 【解析】 对称,排除 A.D,当 5. 设 A. B. ,若 C. D. 时, ,排除 B,故选 C. ,则 ( ) ,所以函数是偶函数,关于 轴 【答案】B 【解析】 而 ,又因为 , 那么 么 ,故选 B. ,所以 ,所以原式等于 , ,可求得 , 那 6. 设点 是 域 A. 内的任一点,则 B. C. ,表示的区域 的最大值为( D. ) 内任一点,点 是区域 关于直线 的对称区 【答案】D 【解析】如图画出可行域,根据点的对称性可知,点 与点 关于直线 离最大,最大距离就是点 到直线 点 到直线 的距离 距离的 2 倍,联立 ,那么 ,故选 D. 的对称点 间的距 ,解得: , 7. 已知三棱锥 面角,则三棱锥 A. 【答案】D 【解析】如图,取 B. 中, 与 是边长为 2 的等边三角形且二面角 ) 为直二 的外接球的表面积为( C. D. 的中点 ,连接 ,连接 , ,点 是三棱锥 中, , , 的外接球的球心,因为棱长都 ,那么外接球 是 2,所以 的表面积是 ,所以在 ,故选 D. 【点睛】立体几何的外接球中处理时常用如下方法:1.结合条件与图形恰当分析取得球心位 置;2.直接建系后,表示出球心坐标,转化为代数;3.化立体为平面,利用平面几何知识求 解. 8. 执行如图所示的程序框图(其中 表示 等于 除以 10 的余数), 则输出的 为( ) A. 2 B. 4 C. 6 D. 8 【答案】D 【解析】 时, 第一次进入循环, , 时, 第二次进入循环 时,第四次进入循环, 时,第六次进入循环, 时,第 2016 次进入循环, , ,当 ,由此 ,所以此时 时,第三次进入循环, 时,第五次进入循环, 可知此循环的周期为 6,当 ,退出循环,输出的 值等于 8,故选 D. 9. 某几何体是由一个三棱柱和一个三棱锥构成的,其三视图如图所示,则该几何体的体积为 ( ) A. B. C. D. 【答案】A 【解析】次三视图还原为如图几何体,长方体削下去等高的四棱锥,剩下一个三棱锥和一个 三棱柱, ,故选 A. 10. 已知双曲线 小值是( A. 4 ) B. 6 C. 8 , 是左焦点, , 是右支上两个动点,则 的最 D. 16 【答案】C 【解析】 ,所以 ,当且仅当 C. 11. 已知 A. 【答案】B 【解析】由已知可知 即 原式等于 即原式等于 于 ,所以原式的取值范围是 , ,设 ,函数是增函数,当 ,故选 B. ,再利用余弦定理求角 的取值 时,函数等于 0,当 时,函数等 ,即 , , , 中, B. , C. , 成等比数列,则 D. 的取值范围是( ) 三点共线时等号成立,故选 【点睛】本题有两个难点,一个是根据正弦定理转化为 范围,二是将 转化为 的函数,最后利用函数的单调性求解,本题考查的 三角函数的知识点非常全面,而且运用转化与化归的思想,属于难题了. 12. 已知 且 ,若当 时,不等式 恒成立,则 的最小值是( ) A. B. C. D. 【答案】A 【解析】原式等价于 令 因为 当 时,即 时,即 , 若 若 综上, ,即 ,即 时, 时,令 单调递增, ,当 ,当 时, 单调递增,当 ,解得 , 时, 单调递增, 时, 递减, 单调递减, ,矛盾; ,成立, 时, 与 矛盾;当 ,则 ,两边取自然对数得 时, , ,最小值为 ,故选 A. 【点睛】本题考查了利用导数研究不等式恒成立的问题,可以通过变形将不等式整理为需要 研究的函数,比如本题设 ,讨论 的取值范围,使函数满足 ,转化为 求函数的单调性,根据单调性可求得函数的最值. 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13. 正三角形 【答案】 【解析】 且两向量的夹角为 ,即 故填: 的边长为 1, 是其重心,则 ________. 14. 【答案】56 【解析】原式 的展开式中, 的系数为________. 其中 只 可能出现在 的展开式中,所以 的系数是 ,故填:56. 15. 已知椭圆 , 和 是椭圆的左、右焦点,过 的直线交椭圆于 , 两点,若 ________________. 【答案】 【解析】设 的内切圆半径为 1, , ,则椭圆离心率为 周长为 ,则 ,则 ,又 ,又 ,则 ,故填: . 16. 先将函数 (其中 的图象上的各点向左平移 个单位,再将各点的横坐标变为原来的 倍 的图象,若 在区间 上单调递增,则 的最大值为 ),得到函数 ____________. 【答案】9 【解析】 在区间 上单调递增, 所以有 ,即 由 可得 ,当 时, ,所以正整数 的最大值是 9. 【点睛】本题考查了三角函数的图像变换,以及根据函数的性质求解参数的最值,当图像是 先平移再伸缩时,注意是 前的系数改变,与 无关,函数在

相关文档

河南省濮阳市2018届高三第一次模拟考试数学(理)试题Word版含解析
2018届河南省濮阳市高三第一次模拟考试数学(理)试题 Word版含解析
河南省濮阳市2018届高三第二次模拟考试数学(理)试题Word版含解析
河南省濮阳市2018届高三第一次模拟考试数学(理)试题 Word版含答案
河南省濮阳市2018届高三第一次模拟考试数学(理)试题Word版含答案
河南省濮阳市2018届高三第一次模拟考试数学(理)试卷(word版含答案)
【模拟试卷】河南省濮阳市2018届高三第一次模拟考试数学(理)试题Word版含答案
河南省濮阳市2018届高三第一次模拟考试数学(文)试题 word
河南省濮阳市2018届高三第二次模拟考试数学(理)---精校解析 Word版
河南省濮阳市2018届高三第一次模拟考试数学(理)试题+Word版含答案【KS5U+高考】
电脑版