2.1.1指数与指数幂的运算1(根式)


Monday, November 23, 2015

§2.1.1指数与指数幂的运算

回顾初中知识,根式是如何定义的?有 那些规定? ①如果一个数的平方等于a,则这个数叫做 a 的平方根. 22=4 2,-2叫4的平方根. 2 (-2) =4 ②如果一个数的立方等于a,则这个数叫做a 的立方根. 23=8 2叫8的立方根. (-2)3=-8 -2叫-8的立方根.
主页

§2.1.1指数与指数幂的运算

24=16 (-2)4=16 25=32

2,-2叫16的4次方根; 2叫32的5次方根;

………………………………………… 通过类比方法,可得n次方根的定义.

2n = a
xn =a

2叫a的n次方根; x叫a的n次方根.
主页

§2.1.1指数与指数幂的运算

1.方根的定义 如果xn=a,那么x叫做 a 的n次方根(n th root), 其中n>1,且n∈N*. 即 如果一个数的n次方等于a (n>1,且 n∈N*),那么这个数叫做 a 的n次方根.

24=16 (-2)4=16
(-2)5=-32

16的4次方根是±2.
-32的5次方根是-2.

27=128

2是128的7次方根.
主页

§2.1.1指数与指数幂的运算

【1】试根据n次方根的定义分别求出下 列各数的n次方根. ±5 (1)25的平方根是_______; 3 (2)27的三次方根是_____; (3)-32的五次方根是____; -2 (4)16的四次方根是_____; ±2 2 6 a (5)a 的三次方根是_____; 0 (6)0的七次方根是______. 点评:求一个数a的n次方根就是求出哪个数的n 次方等于a.
主页

§2.1.1指数与指数幂的运算

23=8 (-2)3=-8 (-2)5=-32

8的3次方根是2.

3 记作: 8 ? 2.

3 ?8 ? ?2. -8的3次方根是-2. 记作: 5 -32的5次方根是-2.记作: ?32 ? ?2.
7 128 ? 2. 128的7次方根是2. 记作:

27=128
奇次方根

1.正数的奇次方根是一个正数, 2.负数的奇次方根是一个负数.

a的n次(奇次)方根用符号 a 表示.
主页

n

§2.1.1指数与指数幂的运算

72=49 (-7)2=49 34=81 (-3)4=81 26=64 (-2)6=64 偶次方根

49的2次方根是7,-7.
记作: ? 49 ? ?7

81的4次方根是3,-3.

记作: ? 81 ? ?3
4

64的6次方根是2,-2.
6

记作: ? 64 ? ?2.

1.正数的偶次方根有两个且互为相反数 2.负数的偶次方根没有意义

正数a的n次方根用符号 ? n a 表示(n为偶数)
主页

§2.1.1指数与指数幂的运算

(1) 奇次方根有以下性质: 正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零. (2)偶次方根有以下性质: 正数的偶次方根有两个且是相反数, 负数没有偶次方根, 零的偶次方根是零.
如果x n ? a, 那么
? n ? ? a , n ? 2k ? 1, k ? N , x?? ? n ? a , a ? 0, n ? 2 k , k ? N . ? ?

主页

§2.1.1指数与指数幂的运算

根指数

n

a

被开方数

根式

主页

§2.1.1指数与指数幂的运算

-8 9 ( ?8) ? ____. ( 9) ? ____,
2 3 3

由xn = a 可知,x叫做a的n次方根.

(n a) n ? a
当n是奇数时, n a 对任意a?R都有意义.它表 示a在实数范围内唯一的一个n次方根. 当n是偶数时, n a 只有当a≥0有意义,当a<0时 无意义. n a (a ≥ 0)表示a在实数范围内的一个 n次方根,另一个是 ? n a (a ≥ 0)

(? a ) ? a
n n

主页

§2.1.1指数与指数幂的运算

(1)

5

2 ? 2,
5

3

(? 2) ? ?2.
3

结论:an开奇次方根,则有 n a n ? a.

(2) 32 ? 3, (?3)2 ? ?3, (?3)2 ? 3.

(3) 2 ? 2, (?2) ? ?2, (? 2) ? 2.
4 4 4 4 4 4

结论:an开偶次方根,则有

n

an ?| a | .

式子

n

a 对任意a ? R都有意义.
n

主页

§2.1.1指数与指数幂的运算

公式1.

? a?
n

n

? a.

适用范围: ①当n为大于1的奇数时, a∈R.

②当n为大于1的偶数时, a≥0.
公式2.
n

a ? a.
n

适用范围:n为大于1的奇数, a∈R.

公式3.

n

a ?| a | .
n

适用范围:n为大于1的偶数, a∈R.
主页

§2.1.1指数与指数幂的运算

例1.求下列各式的值

( 1) (?8) ;
3 3

(2)

(?10) ;
2

(3)

4

(3 ? ? )4 ;
3 3

(4)

(a ? b)2 (a ? b).

解 : ?1?

?? 8? = -8; 2 ?2? ?? 10? ?| ?10 | =10; 4 4 ?3? ?3 ? ? ? ?| 3 ? ? | ? ? ? 3; 2 ?| a ? b | ? a ? b a ? b . ? ? ?4? ?a ? b?
主页

§2.1.1指数与指数幂的运算

【1】下列各式中, 不正确的序号是( ①

④ ).



5 5

4 5

16 ? ?2
5
5

② ( ?3) ? ?3
( ?3) ? ?3
10

④ ( ?3) ? ?3 ⑤
4

( ?3) ? 3
4

主页

§2.1.1指数与指数幂的运算

【2】求下列各式的值.

⑴ ?32;
5

⑵ (? 3);
4

⑶ ( 2 ? 3);
2

⑷ 5? 2 6.
5

解: ⑴ 5 ?32 ?
4

5

(?2) ? ?2;
2 2 2

⑵ (? 3 )? [ (? 3) ] ? 9 ? 9;
(3) ( 2 ? 3 ) ?| 2 ? 3 |? 3 ? 2;
2

(4) 5 ? 2 6 ? ( 2 ? 3 ) ? 3 ? 2.
2

主页

§2.1.1指数与指数幂的运算

例2.填空: 在
6

( ?2) , a , ? a , ( ?3)
2n 5 4 3 4 4

2 n ?1

( ?3) 这四个式子中,没有意义的是________.
4

2 n ?1

主页

§2.1.1指数与指数幂的运算

例3.计算
计算: 5+2 6+ 7-4 3- 6-4 2. [分析] 本题需把各项被开方数变为完全 平方的形式,然后再利用根式运算的性质.

主页

§2.1.1指数与指数幂的运算

[解析] =

5+ 2 6+ 7- 4 3 - 6- 4 2 22- 2× 2 3+ ? 3?2 -

? 3?2+ 2 3· 2+ ? 2?2 +

22- 2× 2 2+ ? 2?2 = ? 3+ 2?2 + ?2- 3?2 - ?2- 2?2 = | 3+ 2|+ |2- 3|- |2- 2| = 3+ 2+ 2- 3- (2- 2) =2 2

主页

§2.1.1指数与指数幂的运算

[答案] [点评]

2 2 此题开方后先带上绝对值,然后根据正负

去掉绝对值符号.

主页

§2.1.1指数与指数幂的运算

1.根式定义 2.根式的性质
(1)当n为奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数,这时,a的n次方根用 符号 n a 表示.零的任何次方根都是零. (2)当n为偶数时,正数a的n次方根有两个, 合写 为 ? n a .负数没有偶次方根. 零的任何次方根 都是零.
主页

§2.1.1指数与指数幂的运算

3.三个公式 (1)

? a?
n

n

? a;

(2) n a n ? a;

(3) a ?| a | .
n n

4.若xn=a , x怎样用a表示?
?n a, n为奇数, ? ? ? n a , n为偶数, a ? 0, x?? a ? 0, ? 0, ?不存在, n为偶数, a ? 0. ?
主页

§2.1.1指数与指数幂的运算

⑴若x表示实数,则下列说法正确的是(C ) A. x一定是根式 B. ? x一定不是根式 C . 5 x 6 一定是根式 D. 3 ? x只有当x ≥ 0才是根式

主页


相关文档

2.1.1指数与指数幂的运算--根式
2._1._1_指数与指数幂的运算根式1用
2.1.1 指数与指数幂的运算根式
2.1.1指数与指数幂的运算(1)根式
2.1.1指数与指数幂的运算(第1课时 根式)
2.1.1 指数与指数幂的运算1----根式
必修1课件:2.1.1指数与指数幂的运算-根式
2.1.1(1)指数与指数幂的运算-根式
2.1.1指数与指数幂的运算(第1课时根式)
2.1.1 指数与指数幂的运算--根式 课件1(人教A版必修1)
电脑版