【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 数学(理)

玉溪一中高 2019 届高三第二次调研考试 理科数学试卷 考试时间:120 分钟试卷总分:150 分 第Ⅰ卷(选择题,共 60 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一个是 符合题目要求的) 1.已知集合 A ? ? x 2 ? x ? ? 1? ? , B ? ? x x( x ? 2) ? 0? ,则 A ? B ? ( 2? B. ?1,2? C. ) A. ?? 1,2? ?0,2? D. ?? 1,1? ) 2. 下列函数中,既是偶函数,又在区间 (0, ??) 上单调递减的函数是( A. y ? x3 B. y ? ln 2 1 C. y ? 2| x| | x| D. y ? cos x 3.命题“ ?x0 ? R, x0 ? x0 ? 1 ? 0 ”的否定为( A. ?x0 ? R, x0 ? x0 ? 1 ? 0 C. ?x ? R, x ? x ? 1 ? 0 2 x ) 2 B. ?x0 ? R, x0 ? x0 ? 1 ? 0 D. ?x ? R, x ? x ? 1 ? 0 2 2 4. 函数 f ( x) ? 2 ? 3x 的零点所在的一个区间是( A. ) ? ?2, ?1? 1 B. ? ?1,0? C. ? 0,1? D. ?1, 2? ) 5.已知 a ? 4 3 , b ? log1 A. a ? b ? c 2 1 1 , c ? log 3 ,则( 4 3 4 B. b ? c ? a C. c ? b ? a D. b ? a ? c ) 6. 函数 f ( x) ? x ln x 的最小值为( A. ? 7.求 ? 1 e B. 1 e C. ? ) 1 2e D. 1 2e ? ? sin xdx ? ( ? A. 0 B. 2 C. ?2 D. 4 8.设 M 为实数区间, a ? 0且a ? 1 ,若“ a ? M ”是“函数 f ( x) ? loga x ? 1 在 ?0,1? 上单调递减” 的一个充分不必要条件,则区间 M 可以是( A. ?1 , ? ?? B. ?1 , 2? C. ) D. ? 0, ? ? 0,1? ? ? 1? 2? 9. f ? x ? ? x ? 2 ln x x ,则函数 y ? f ? x ? 的大致图像为( ) 10.定义在 ? 0, A. C. ? ? ?? ? ? 上的函数 f ( x), f ?( x) 是它的导函数,且恒有 f ( x) ? f ?( x) tan x 成立,则( 2? ) 3f ( ) ? 2f ( ) 4 3 3f ( ) ? f ( ) 6 3 x ? B. ? ? 2f( )? f( ) 6 4 ? ? D. f (1) ? 2 f ( ) sin1 ? 6 11.设函数 f ( x) ? e (2 x ?1) ? ax ? a, 其中a ? 1,若存在唯一的整数 x0 ,使得 f ( x0 ) ? 0 ,则 a 的取 值范围是( ) A. ? ? ,1? ? 2e ? 12.已知函数 f ( x) ? ? ? 3 ? B. ? ? , ? ? 2e 4 ? ? 3 3? C. ? , ? ? 2e 4 ? ? 3 3? D. ? ?3 ? ,1? ? 2e ? ?ln(? x), x ? 0 x 2 ??e ? ax ? e , x ? 0 ,若函数 f ( x) 有 3 个零点,则实数 a 的取值范围是( ) A. ?1, ?? ? B. ?1, ?? ? C. ? e , ?? ? 2 2 D. ? ? e , ?? ? 第Ⅱ卷 二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.若 f ( x) ? 1 log 1 (2 x ? 1) 2 ,则 f ( x) 的定义域为. x 14. 已 知 f ( x) 是 定 义 在 R 上 周 期 为 2 的 偶 函 数 , 且 当 x ??0 , 1 ,则 ? 1 ? 时 , f ( x )? 2 . g ( x)? f ( x? ) lo x 5 g 的零点个数有个 15.若函数 f ( x) ? x2 ? 3x ? 4 的定义域为 ?0, m? ,值域为 ? ? ? 25 ? , ?4? ,则 m 的取值范围是. ? 4 ? 3 4 16.定义在 R 上的函数 f ( x) 满足 f ( x ? ) ? f ( x) ? 0 ,且函数 y ? f ( x ? ) 为奇函数,给出下列命 题:①函数 f ( x) 不是周期函数;②函数 y ? f ( x) 的图像关于点 ? ? 像关于 y 轴对称,其中真命题的序号为. 三、解答题(本大题共 6 小题,70 分,解答应写出文字说明、证明过程或演算步骤). 3 2 ? 3 ? ,0 ? 对称;③函数 y ? f ( x) 的图 ? 4 ? (a ? 0) ,求 sin ? , cos? , tan? 的值. 17.(10 分)已知角 ? 的终边经过点 P(?4a,3a), 18.(12 分)在平面直角坐标系中,以坐标原点 O 为极点, x 轴的非负半轴为极轴建立极坐标系.已 知直线 l 的参数方程为 ? ?x ? 3 ? t ? y ? 3t (t为参数) ,曲线 C 的极坐标方程为 ? sin 2 ? ? 4 cos? . (1)求曲线 C 的直角坐标方程和直线 l 的普通方程; (2)设直线 l 与曲线 C 交于 A, B 两点,点 P(3,0) ,求 PA ? PB 的值. 19.(12 分)已知函数 f ( x) ? x ? 4 ? x ?1 ? 3 (1)求不等式 f ( x) ? 4 的解集; (2)

相关文档

【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 数学(文)
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试历史试题 word版含答案
【全国百强校顶尖名校】云南省玉溪一中2019届高三上学期第四次月考 数学(文)
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 化学
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 政治
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 英语
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 语文
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 生物
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 物理
【全国百强校顶尖名校】云南省玉溪市一中2019届高三上学期第二次调研考试 地理
电脑版